Note that in some languages, such as Java, there is no unsigned integer type. In this case, both input and output will be given as a signed integer type. They should not affect your implementation, as the integer’s internal binary representation is the same, whether it is signed or unsigned.
In Java, the compiler represents the signed integers using 2’s complement notation. Therefore, in Example 2 above, the input represents the signed integer 3 and the output represents the signed integer 1073741825.
Example 1:
1 2 3 4
Input: n = 00000010100101000001111010011100 Output: 964176192 (00111001011110000010100101000000) Explanation:The input binary string00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is00111001011110000010100101000000.
Example 2:
1 2 3 4
Input: n = 11111111111111111111111111111101 Output: 3221225471 (10111111111111111111111111111111) Explanation:The input binary string11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is10111111111111111111111111111111.
Constraints:
The input must be a binary string of length 32
Solve
位元的方法
利用位元移位
1 2 3 4 5 6 7 8 9 10
classSolution: defreverseBits(self, n: int) -> int: res = 0 for i inrange(32): if n & 1: res += 2**(31 - i) n=n>>1 return res
純位元
1 2 3 4 5 6 7 8 9 10 11 12 13
classSolution: defreverseBits(self, n: int) -> int: res = 0# 初始化結果為 0 for i inrange(32): # 計算 n 的最後一位(最低有效位) bit = n & 1 # 將這一位按照反轉後的位置,加入到結果中 res |= bit << (31 - i) # 將 n 向右移一位,以獲取下一位元 n >>= 1 return res # 返回反轉後的整數結果